Sacks dense ideals and Marczewski type null ideals

Wolfgang Wohofsky

Vienna University of Technology (TU Wien)

Winter School, Hejnice, February 4, 2015

The real numbers: topology, measure, algebraic structure

The real numbers ("the reals")

- ullet \mathbb{R} , the classical real line
- 2^{ω} , the Cantor space (totally disconnected, compact)

Structure on the reals:

- natural topology (intervals/basic clopen sets form a basis)
- standard (Lebesgue) measure
- group structure
 - \triangleright $(2^{\omega},+)$ is a topological group, with + bitwise modulo 2
- Two translation-invariant σ -ideals
 - ▶ meager sets M
 - ▶ measure zero sets N

The real numbers: topology, measure, algebraic structure

The real numbers ("the reals")

- ullet \mathbb{R} , the classical real line
- 2^{ω} , the Cantor space (totally disconnected, compact)

Structure on the reals:

- natural topology (intervals/basic clopen sets form a basis)
- standard (Lebesgue) measure
- group structure
 - $(2^{\omega},+)$ is a topological group, with + bitwise modulo 2
- Two translation-invariant σ -ideals
 - ▶ meager sets M
 - ▶ measure zero sets N

The real numbers: topology, measure, algebraic structure

The real numbers ("the reals")

- \bullet \mathbb{R} , the classical real line
- 2^{ω} , the Cantor space (totally disconnected, compact)

Structure on the reals:

- natural topology (intervals/basic clopen sets form a basis)
- standard (Lebesgue) measure
- group structure
 - $(2^{\omega},+)$ is a topological group, with + bitwise modulo 2
- Two translation-invariant σ -ideals
 - meager sets M
 - ightharpoonup measure zero sets $\mathcal N$

Strong measure zero sets

For an interval $I \subseteq \mathbb{R}$, let $\lambda(I)$ denote its length.

Definition (well-known)

A set $X \subseteq \mathbb{R}$ is (Lebesgue) measure zero $(X \in \mathcal{N})$ if for each positive real number $\varepsilon > 0$ there is a sequence of intervals $(I_n)_{n < \omega}$ of total length $\sum_{n < \omega} \lambda(I_n) \le \varepsilon$ such that $X \subseteq \bigcup_{n < \omega} I_n$.

Definition (Borel; 1919)

A set $X \subseteq \mathbb{R}$ is strong measure zero $(X \in \mathcal{SN})$ if for each sequence of positive real numbers $(\varepsilon_n)_{n < \omega}$ there is a sequence of intervals $(I_n)_{n < \omega}$ with $\forall n \in \omega \ \lambda(I_n) \leq \varepsilon_n$ such that $X \subseteq \bigcup_{n < \omega} I_n$.

Strong measure zero sets

For an interval $I \subseteq \mathbb{R}$, let $\lambda(I)$ denote its length.

Definition (well-known)

A set $X \subseteq \mathbb{R}$ is (Lebesgue) measure zero $(X \in \mathcal{N})$ if for each positive real number $\varepsilon > 0$ there is a sequence of intervals $(I_n)_{n < \omega}$ of total length $\sum_{n < \omega} \lambda(I_n) \leq \varepsilon$ such that $X \subseteq \bigcup_{n < \omega} I_n$.

Definition (Borel; 1919)

A set $X \subseteq \mathbb{R}$ is strong measure zero $(X \in \mathcal{SN})$ if for each sequence of positive real numbers $(\varepsilon_n)_{n < \omega}$ there is a sequence of intervals $(I_n)_{n < \omega}$ with $\forall n \in \omega \ \lambda(I_n) \leq \varepsilon_n$ such that $X \subseteq \bigcup_{n < \omega} I_n$.

Equivalent characterization of strong measure zero sets

For $Y, Z \subseteq 2^{\omega}$, let $Y + Z = \{y + z : y \in Y, z \in Z\}$.

Key Theorem (Galvin, Mycielski, Solovay; 1973)

A set $Y \subseteq 2^{\omega}$ is strong measure zero if and only if for every meager set $M \in \mathcal{M}, \ Y + M \neq 2^{\omega}$.

Note that $Y+M\neq 2^{\omega}$ if and only if Y can be "translated away" from M, i.e., there exists a $t\in 2^{\omega}$ such that $(Y+t)\cap M=\emptyset$.

Key Definition

Let $\mathcal{J}\subseteq\mathcal{P}(2^\omega)$ be arbitrary. Define

$$\mathcal{J}^* := \{ Y \subseteq 2^\omega : Y + Z \neq 2^\omega \text{ for every set } Z \in \mathcal{J} \}.$$

 \mathcal{J}^* is the collection of " \mathcal{J} -shiftable sets", i.e., $Y \in \mathcal{J}^*$ if Y can be translated away from every set in \mathcal{J} .

Equivalent characterization of strong measure zero sets

For $Y, Z \subseteq 2^{\omega}$, let $Y + Z = \{y + z : y \in Y, z \in Z\}$.

Key Theorem (Galvin, Mycielski, Solovay; 1973)

A set $Y\subseteq 2^{\omega}$ is strong measure zero if and only if for every meager set $M\in\mathcal{M},\ Y+M\neq 2^{\omega}.$

Note that $Y+M\neq 2^{\omega}$ if and only if Y can be "translated away" from M, i.e., there exists a $t\in 2^{\omega}$ such that $(Y+t)\cap M=\emptyset$.

Key Definition

Let $\mathcal{J}\subseteq\mathcal{P}(2^\omega)$ be arbitrary. Define

$$\mathcal{J}^{\star} := \{ Y \subseteq 2^{\omega} : Y + Z \neq 2^{\omega} \text{ for every set } Z \in \mathcal{J} \}.$$

 \mathcal{J}^* is the collection of " \mathcal{J} -shiftable sets", i.e., $Y \in \mathcal{J}^*$ if Y can be translated away from every set in \mathcal{J} .

Strongly meager sets

Key Definition (from previous slide)

Let $\mathcal{J}\subseteq\mathcal{P}(2^\omega)$ be arbitrary. Define

$$\mathcal{J}^{\star} := \{ Y \subseteq 2^{\omega} : Y + Z \neq 2^{\omega} \text{ for every set } Z \in \mathcal{J} \}.$$

Key Theorem (Galvin, Mycielski, Solovay; 1973)

A set Y is strong measure zero if and only if it is " \mathcal{M} -shiftable", i.e.,

$$SN = M^*$$

Replacing \mathcal{M} by \mathcal{N} yields a notion dual to strong measure zero:

Definition

A set Y is strongly meager $(Y \in \mathcal{SM})$ if it is " \mathcal{N} -shiftable", i.e.,

$$SM := N^{3}$$

Strongly meager sets

Key Definition (from previous slide)

Let $\mathcal{J}\subseteq\mathcal{P}(2^\omega)$ be arbitrary. Define

$$\mathcal{J}^{\star} := \{ Y \subseteq 2^{\omega} : Y + Z \neq 2^{\omega} \text{ for every set } Z \in \mathcal{J} \}.$$

Key Theorem (Galvin, Mycielski, Solovay; 1973)

A set Y is strong measure zero if and only if it is " \mathcal{M} -shiftable", i.e.,

$$SN = M^*$$

Replacing $\mathcal M$ by $\mathcal N$ yields a notion dual to strong measure zero:

Definition

A set Y is strongly meager $(Y \in \mathcal{SM})$ if it is " \mathcal{N} -shiftable", i.e.,

$$\mathcal{SM} := \mathcal{N}^*$$

Strongly meager sets

Key Definition (from previous slide)

Let $\mathcal{J}\subseteq\mathcal{P}(2^\omega)$ be arbitrary. Define

$$\mathcal{J}^{\star} := \{ Y \subseteq 2^{\omega} : Y + Z \neq 2^{\omega} \text{ for every set } Z \in \mathcal{J} \}.$$

Key Theorem (Galvin, Mycielski, Solovay; 1973)

A set Y is strong measure zero if and only if it is " \mathcal{M} -shiftable", i.e.,

$$SN = M^*$$

Replacing \mathcal{M} by \mathcal{N} yields a notion dual to strong measure zero:

Definition

A set Y is strongly meager $(Y \in \mathcal{SM})$ if it is " \mathcal{N} -shiftable", i.e.,

$$\mathcal{SM} := \mathcal{N}^{\star}$$

Borel Conjecture + dual Borel Conjecture

Definition

The Borel Conjecture (BC) is the statement that there are **no** uncountable strong measure zero sets, i.e., $\mathcal{SN} = \mathcal{M}^* = [2^{\omega}]^{\leq \aleph_0}$.

• Con(BC), actually BC holds in the Laver model (Laver, 1976)

Definition

The dual Borel Conjecture (dBC) is the statement that there are no uncountable strongly meager sets, i.e., $\mathcal{SM} = \mathcal{N}^* = [2^\omega]^{\leq \aleph_0}$.

• Con(dBC), actually dBC holds in the Cohen model (Carlson, 1993)

Theorem (Goldstern,Kellner,Shelah,W.; 2011)

There is a model of ZFC in which both the Borel Conjecture and the dual Borel Conjecture hold, i.e., Con(BC + dBC).

Borel Conjecture + dual Borel Conjecture

Definition

The Borel Conjecture (BC) is the statement that there are **no** uncountable strong measure zero sets, i.e., $\mathcal{SN} = \mathcal{M}^* = [2^{\omega}]^{\leq \aleph_0}$.

• Con(BC), actually BC holds in the Laver model (Laver, 1976)

Definition

The dual Borel Conjecture (dBC) is the statement that there are **no** uncountable strongly meager sets, i.e., $\mathcal{SM} = \mathcal{N}^{\star} = [2^{\omega}]^{\leq \aleph_0}$.

• Con(dBC), actually dBC holds in the Cohen model (Carlson, 1993)

Theorem (Goldstern,Kellner,Shelah,W.; 2011)

There is a model of ZFC in which both the Borel Conjecture and the dual Borel Conjecture hold, i.e., Con(BC + dBC).

Borel Conjecture + dual Borel Conjecture

Definition

The Borel Conjecture (BC) is the statement that there are **no** uncountable strong measure zero sets, i.e., $\mathcal{SN} = \mathcal{M}^* = [2^{\omega}]^{\leq \aleph_0}$.

• Con(BC), actually BC holds in the Laver model (Laver, 1976)

Definition

The dual Borel Conjecture (dBC) is the statement that there are **no** uncountable strongly meager sets, i.e., $\mathcal{SM} = \mathcal{N}^* = [2^\omega]^{\leq \aleph_0}$.

• Con(dBC), actually dBC holds in the Cohen model (Carlson, 1993)

Theorem (Goldstern, Kellner, Shelah, W.; 2011)

There is a model of ZFC in which both the Borel Conjecture and the dual Borel Conjecture hold, i.e., Con(BC + dBC).

Assume that $\mathcal{J}\subseteq\mathcal{P}(2^\omega)$ is a translation-invariant σ -ideal. Recall that $\mathcal{J}^\star:=\{Y\subseteq 2^\omega:Y+Z\neq 2^\omega\text{ for every set }Z\in\mathcal{J}\}.$

Definition

The \mathcal{J} -Borel Conjecture (\mathcal{J} -BC) the statement that there are **no** uncountable \mathcal{J} -shiftable sets, i.e., $\mathcal{J}^* = [2^\omega]^{\leq \aleph_0}$.

The Marczewski ideal s_0 is the collection of all $Z \subseteq 2^{\omega}$ such that for each perfect set P, there exists a perfect subset $Q \subseteq P$ with $Q \cap Z = \emptyset$.

Definition

The Marczewski Borel Conjecture (MBC) is the statement that there are **no** uncountable s_0 -shiftable sets, i.e., $s_0^* = [2^\omega]^{\leq \aleph_0}$.

Assume that $\mathcal{J}\subseteq\mathcal{P}(2^\omega)$ is a translation-invariant σ -ideal. Recall that $\mathcal{J}^\star:=\{Y\subseteq 2^\omega:Y+Z\neq 2^\omega\text{ for every set }Z\in\mathcal{J}\}.$

Definition

The \mathcal{J} -Borel Conjecture (\mathcal{J} -BC) the statement that there are **no** uncountable \mathcal{J} -shiftable sets, i.e., $\mathcal{J}^{\star} = [2^{\omega}]^{\leq \aleph_0}$.

The Marczewski ideal s_0 is the collection of all $Z \subseteq 2^{\omega}$ such that for each perfect set P, there exists a perfect subset $Q \subseteq P$ with $Q \cap Z = \emptyset$.

Definition

The Marczewski Borel Conjecture (MBC) is the statement that there are **no** uncountable s_0 -shiftable sets, i.e., $s_0^* = [2^\omega]^{\leq \aleph_0}$.

Assume that $\mathcal{J}\subseteq\mathcal{P}(2^\omega)$ is a translation-invariant σ -ideal. Recall that $\mathcal{J}^\star:=\{Y\subseteq 2^\omega:Y+Z\neq 2^\omega\text{ for every set }Z\in\mathcal{J}\}.$

Definition

The \mathcal{J} -Borel Conjecture (\mathcal{J} -BC) the statement that there are **no** uncountable \mathcal{J} -shiftable sets, i.e., $\mathcal{J}^{\star} = [2^{\omega}]^{\leq \aleph_0}$.

The Marczewski ideal s_0 is the collection of all $Z \subseteq 2^{\omega}$ such that for each perfect set P, there exists a perfect subset $Q \subseteq P$ with $Q \cap Z = \emptyset$.

Definition

The Marczewski Borel Conjecture (MBC) is the statement that there are **no** uncountable s_0 -shiftable sets, i.e., $s_0^* = [2^\omega]^{\leq \aleph_0}$.

Assume that $\mathcal{J}\subseteq\mathcal{P}(2^\omega)$ is a translation-invariant σ -ideal. Recall that $\mathcal{J}^\star:=\{Y\subseteq 2^\omega:Y+Z\neq 2^\omega\text{ for every set }Z\in\mathcal{J}\}.$

Definition

The \mathcal{J} -Borel Conjecture (\mathcal{J} -BC) the statement that there are **no** uncountable \mathcal{J} -shiftable sets, i.e., $\mathcal{J}^{\star} = [2^{\omega}]^{\leq \aleph_0}$.

The Marczewski ideal s_0 is the collection of all $Z \subseteq 2^{\omega}$ such that for each perfect set P, there exists a perfect subset $Q \subseteq P$ with $Q \cap Z = \emptyset$.

Definition

The Marczewski Borel Conjecture (MBC) is the statement that there are **no** uncountable s_0 -shiftable sets, i.e., $s_0^* = [2^\omega]^{\leq \aleph_0}$.

Assume that $\mathcal{J}\subseteq\mathcal{P}(2^\omega)$ is a translation-invariant σ -ideal. Recall that $\mathcal{J}^\star:=\{Y\subseteq 2^\omega:Y+Z\neq 2^\omega\text{ for every set }Z\in\mathcal{J}\}.$

Definition

The \mathcal{J} -Borel Conjecture (\mathcal{J} -BC) the statement that there are **no** uncountable \mathcal{J} -shiftable sets, i.e., $\mathcal{J}^{\star} = [2^{\omega}]^{\leq \aleph_0}$.

The Marczewski ideal s_0 is the collection of all $Z \subseteq 2^{\omega}$ such that for each perfect set P, there exists a perfect subset $Q \subseteq P$ with $Q \cap Z = \emptyset$.

Definition

The Marczewski Borel Conjecture (MBC) is the statement that there are **no** uncountable s_0 -shiftable sets, i.e., $s_0^* = [2^\omega]^{\leq \aleph_0}$.

Sacks dense ideals

Unlike BC and dBC, the status of MBC under CH is unclear...

- Is MBC (i.e., $s_0^* = [2^{\omega}]^{\leq \aleph_0}$) consistent with CH?
- Or does CH even imply MBC?

To investigate the situation under CH, I introduced the following notion:

Definition

A collection $\mathcal{I} \subseteq \mathcal{P}(2^{\omega})$ is a Sacks dense ideal if

- \mathcal{I} is a σ -ideal.
- *I* is translation-invariant.
- \mathcal{I} is dense in Sacks forcing, more explicitly, for each perfect $P \subseteq 2^{\omega}$, there is a perfect subset Q in the ideal, i.e., $\exists Q \subseteq P$, $Q \in \mathcal{I}$.

Lemma ("Main Lemma")

Assume CH. Let \mathcal{I} be a Sacks dense ideal. Then $s_0^* \subseteq \mathcal{I}$.

Sacks dense ideals

Unlike BC and dBC, the status of MBC under CH is unclear...

- Is MBC (i.e., $s_0^* = [2^{\omega}]^{\leq \aleph_0}$) consistent with CH?
- Or does CH even imply MBC?

To investigate the situation under CH, I introduced the following notion:

Definition

A collection $\mathcal{I} \subseteq \mathcal{P}(2^{\omega})$ is a Sacks dense ideal if

- \mathcal{I} is a σ -ideal,
- *I* is translation-invariant,
- \mathcal{I} is dense in Sacks forcing, more explicitly, for each perfect $P \subseteq 2^{\omega}$, there is a perfect subset Q in the ideal, i.e., $\exists Q \subseteq P, \ Q \in \mathcal{I}$.

Lemma ("Main Lemma")

Assume CH. Let \mathcal{I} be a Sacks dense ideal. Then $s_0^* \subseteq \mathcal{I}$.

Sacks dense ideals

Unlike BC and dBC, the status of MBC under CH is unclear. . .

- Is MBC (i.e., $s_0^* = [2^{\omega}]^{\leq \aleph_0}$) consistent with CH?
- Or does CH even imply MBC?

To investigate the situation under CH, I introduced the following notion:

Definition

A collection $\mathcal{I} \subseteq \mathcal{P}(2^{\omega})$ is a Sacks dense ideal if

- \mathcal{I} is a σ -ideal,
- *I* is translation-invariant,
- \mathcal{I} is dense in Sacks forcing, more explicitly, for each perfect $P \subseteq 2^{\omega}$, there is a perfect subset Q in the ideal, i.e., $\exists Q \subseteq P$, $Q \in \mathcal{I}$.

Lemma ("Main Lemma")

Assume CH. Let \mathcal{I} be a Sacks dense ideal. Then $s_0^* \subseteq \mathcal{I}$.

Lemma ("Main Lemma"; from previous slide)

Assume CH. Let \mathcal{I} be a Sacks dense ideal. Then $s_0^* \subseteq \mathcal{I}$.

In other words: $s_0^* \subseteq \bigcap \{\mathcal{I} : \mathcal{I} \text{ is a Sacks dense ideal}\}.$

Can we (consistently) find many Sacks dense ideals under CH?

Lemma ("Main Lemma"; from previous slide)

Assume CH. Let \mathcal{I} be a Sacks dense ideal. Then $s_0^* \subseteq \mathcal{I}$.

In other words: $s_0^* \subseteq \bigcap \{\mathcal{I} : \mathcal{I} \text{ is a Sacks dense ideal} \}.$

Can we (consistently) find many Sacks dense ideals under CH?

$$\mathcal{M}$$
 are Sacks dense ideals $\mathcal{M} \cap \mathcal{N}$ $\cup \mathbb{N}$

Lemma ("Main Lemma"; from previous slide)

Assume CH. Let \mathcal{I} be a Sacks dense ideal. Then $s_0^* \subseteq \mathcal{I}$.

In other words: $s_0^* \subseteq \bigcap \{\mathcal{I} : \mathcal{I} \text{ is a Sacks dense ideal}\}.$

Can we (consistently) find many Sacks dense ideals under CH?

Lemma ("Main Lemma"; from previous slide)

Assume CH. Let \mathcal{I} be a Sacks dense ideal. Then $s_0^* \subseteq \mathcal{I}$.

In other words: $s_0^* \subseteq \bigcap \{\mathcal{I} : \mathcal{I} \text{ is a Sacks dense ideal} \}.$

Can we (consistently) find many Sacks dense ideals under CH?

$$\mathcal{M}$$
 are Sacks dense ideals $\mathcal{M} \cap \mathcal{N}$ $\cup \mathbb{N}$

Lemma ("Main Lemma"; from previous slide)

Assume CH. Let \mathcal{I} be a Sacks dense ideal. Then $s_0^* \subseteq \mathcal{I}$.

In other words: $s_0^* \subseteq \bigcap \{\mathcal{I} : \mathcal{I} \text{ is a Sacks dense ideal}\}.$

Can we (consistently) find many Sacks dense ideals under CH?

$$\mathcal{M}$$
 are Sacks dense ideals $\mathcal{M} \cap \mathcal{N}$ $\cup \mathbb{N}$

E

 \mathbb{U} \mathbb{H}

$$\bigcap \{ \mathcal{I}_f : f \in \omega^{\omega} \} \quad \subseteq \text{null-additive} \subseteq \mathcal{SN} \cap \mathcal{SM}$$

UN

$$\bigcap \{ \mathcal{I}_f : f \in \omega^\omega \} \cap \mathcal{E}_0$$

UI

$$\exists$$
 uncount. $Y \in \bigcap \{\mathcal{I}_{lpha} : lpha \in \omega_1\}$, for any \aleph_1 -sized family of \mathcal{I}_{lpha} 's

 $\cup \$ \quad \longleftarrow \; \mathsf{Theorem} \; \mathsf{using} \; s_0^{\mathrm{trans}}$

$$\bigcap \{ \mathcal{I} : \mathcal{I} \text{ is a Sacks dense ideal} \}$$

sn*

UI

٤

U#

$$\bigcap \{ \mathcal{I}_f : f \in \omega^{\omega} \} \quad \subseteq \text{null-additive} \subseteq \mathcal{SN} \cap \mathcal{SM}$$

U'IL

$$\bigcap \{ \mathcal{I}_f : f \in \omega^\omega \} \cap \mathcal{E}_0$$

UI

$$\exists$$
 uncount. $Y \in \bigcap \{\mathcal{I}_{\alpha} : \alpha \in \omega_1\}$, for any \aleph_1 -sized family of \mathcal{I}_{α} 's

 \cup 14 $\ \leftarrow$ Theorem using $s_0^{
m trans}$

$$\bigcap \{ \mathcal{I} : \mathcal{I} \text{ is a Sacks dense ideal} \}$$

sn*

U

$$\omega$$
 $] \leq \aleph_0$

 \mathcal{E} $\bigcup \mathbb{N}$ $f \in \omega^{\omega} \mathbb{N} \subset \text{null}_{\sigma}$

$$\bigcap \{ \mathcal{I}_f : f \in \omega^\omega \} \quad \subseteq \mathsf{null-additive} \subseteq \mathcal{SN} \cap \mathcal{SM}$$

$$\bigcap \{\mathcal{I}_f: f \in \omega^\omega\} \cap \underline{\mathcal{E}_0}$$

UI

In uncount. $Y \in \bigcap \{\mathcal{I}_{\alpha} : \alpha \in \omega_1\}$, for any \aleph_1 -sized family of \mathcal{I}_{α} 's

 $\bigcap \{ \mathcal{I} : \mathcal{I} \text{ is a Sacks dense ideal} \}$

sn*

UI

```
W.
                                       \bigcap \{ \mathcal{I}_f : f \in \omega^\omega \} \subseteq \text{null-additive} \subseteq \mathcal{SN} \cap \mathcal{SM}
                                                        J/K
                                       \bigcap \{ \mathcal{I}_f : f \in \omega^{\omega} \} \cap \mathcal{E}_0
\exists uncount. Y \in \bigcap \{\mathcal{I}_{\alpha} : \alpha \in \omega_1\}, for any \aleph_1-sized family of \mathcal{I}_{\alpha}'s
```

```
W.
                                    \bigcap \{ \mathcal{I}_f : f \in \omega^\omega \} \subseteq \text{null-additive} \subseteq \mathcal{SN} \cap \mathcal{SM}
                                                    J/K
                                    \bigcap \{ \mathcal{I}_f : f \in \omega^{\omega} \} \cap \mathcal{E}_0
\exists uncount. Y \in \bigcap \{\mathcal{I}_{\alpha} : \alpha \in \omega_1\}, for any \aleph_1-sized family of \mathcal{I}_{\alpha}'s
                                                    \cupN \leftarrow Theorem using s_0^{\text{trans}}
                                    \bigcap \{ \mathcal{I} : \mathcal{I} \text{ is a Sacks dense ideal} \}
```

$$\mathcal{E}$$

$$\cup \mathbb{N}$$

$$\bigcap \{ \mathcal{I}_f : f \in \omega^\omega \} \quad \subseteq \text{null-additive} \subseteq \mathcal{SN} \cap \mathcal{SM}$$

$$\cup \mathbb{N}$$

$$\bigcap \{ \mathcal{I}_f : f \in \omega^\omega \} \cap \mathcal{E}_0$$

$$\cup \mathbb{I}$$

$$\exists \text{ uncount. } Y \in \bigcap \{ \mathcal{I}_\alpha : \alpha \in \omega_1 \}, \text{ for any } \mathbb{N}_1\text{-sized family of } \mathcal{I}_\alpha\text{'s}$$

$$\cup \mathbb{N} \quad \longleftarrow \text{ Theorem using } s_0^{\text{trans}}$$

$$\bigcap \{ \mathcal{I} : \mathcal{I} \text{ is a Sacks dense ideal} \}$$

$$\cup \mathbb{I} \quad \longleftarrow \text{ "Main Lemma"}$$

$$s_0^*$$

$$\cup \mathbb{I}$$

 $[2^{\omega}]^{\leq\aleph_0}$

$$Y \in s_0 \quad :\iff \forall p \; \exists q \leq p$$

$$|[q] \cap Y| \leq \aleph_0$$

$$Y \in s_0^{\text{trans}} :\iff \forall p \ \exists q \leq p \ \forall t \in 2^{\omega} \ |(t + [q]) \cap Y| \leq \aleph_0$$

Theorem (using s_0^{trans})

- Let $\{\mathcal{I}_{\alpha} : \alpha < \omega_1\}$ be an \aleph_1 -sized family of Sacks dense ideals. Then there exists an uncountable set $Y \in \bigcap_{\alpha \in \omega_1} \mathcal{I}_{\alpha}$.
- ullet Under CH, we can construct the set Y in such a way that $Y \in s_0^{\mathrm{trans}}$.
- $Y \in s_0^{\mathrm{trans}}$ implies that there is a Sacks dense ideal $\mathcal J$ with $Y \notin \mathcal J$.

Question

Does $[2^{\omega}]^{\leq \aleph_0} = \bigcap \{\mathcal{I} : \mathcal{I} \text{ is S.d.i.} \}$ (at least consistently) hold under CH?

$$Y \in s_0 \quad :\iff \forall p \; \exists q \leq p$$

$$|[q] \cap Y| \leq \aleph_0$$

$$Y \in s_0^{\text{trans}} :\iff \forall p \; \exists q \leq p \; \; \forall t \in 2^{\omega} \; \; |(t+[q]) \cap Y| \leq \aleph_0$$

Theorem (using s_0^{trans})

- Let $\{\mathcal{I}_{\alpha} : \alpha < \omega_1\}$ be an \aleph_1 -sized family of Sacks dense ideals. Then there exists an uncountable set $Y \in \bigcap_{\alpha \in \omega_1} \mathcal{I}_{\alpha}$.
- ullet Under CH, we can construct the set Y in such a way that $Y \in s_0^{\mathrm{trans}}.$
- $Y \in s_0^{\mathrm{trans}}$ implies that there is a Sacks dense ideal $\mathcal J$ with $Y \notin \mathcal J$.

Question

Does $[2^{\omega}]^{\leq \aleph_0} = \bigcap \{\mathcal{I} : \mathcal{I} \text{ is S.d.i.} \}$ (at least consistently) hold under CH?

$$Y \in s_0 \quad :\iff \forall p \; \exists q \leq p$$

$$|[q] \cap Y| \leq \aleph_0$$

$$Y \in s_0^{\text{trans}} :\iff \forall p \; \exists q \leq p \; \; \forall t \in 2^{\omega} \; \; |(t+[q]) \cap Y| \leq \aleph_0$$

Theorem (using s_0^{trans})

- Let $\{\mathcal{I}_{\alpha}: \alpha < \omega_1\}$ be an \aleph_1 -sized family of Sacks dense ideals. Then there exists an uncountable set $Y \in \bigcap_{\alpha \in \omega_1} \mathcal{I}_{\alpha}$.
- Under CH, we can construct the set Y in such a way that $Y \in s_0^{trans}$.
- $Y \in s_0^{\mathrm{trans}}$ implies that there is a Sacks dense ideal $\mathcal J$ with $Y \notin \mathcal J$.

Question

Does $[2^{\omega}]^{\leq\aleph_0} = \bigcap \{\mathcal{I}: \mathcal{I} \text{ is } S.d.i.\}$ (at least consistently) hold under CH?

$$Y \in s_0 \quad :\iff \forall p \ \exists q \leq p \qquad \qquad |[q] \cap Y| \leq \aleph_0$$

$$Y \in s_0^{\text{trans}} : \iff \forall p \ \exists q \leq p \ \forall t \in 2^{\omega} \ |(t + [q]) \cap Y| \leq \aleph_0$$

Theorem (using s_0^{trans})

- Let $\{\mathcal{I}_{\alpha} : \alpha < \omega_1\}$ be an \aleph_1 -sized family of Sacks dense ideals. Then there exists an uncountable set $Y \in \bigcap_{\alpha \in \omega_1} \mathcal{I}_{\alpha}$.
- Under CH, we can construct the set Y in such a way that $Y \in s_0^{\text{trans}}$.
- $Y \in s_0^{\text{trans}}$ implies that there is a Sacks dense ideal $\mathcal J$ with $Y \notin \mathcal J$.

Question

Does $[2^{\omega}]^{\leq\aleph_0} = \bigcap \{\mathcal{I}: \mathcal{I} \text{ is } S.d.i.\}$ (at least consistently) hold under CH?

$$Y \in s_0 \quad :\iff \forall p \ \exists q \leq p \qquad \qquad |[q] \cap Y| \leq \aleph_0$$

$$Y \in s_0^{\text{trans}} : \iff \forall p \ \exists q \leq p \ \forall t \in 2^{\omega} \ |(t + [q]) \cap Y| \leq \aleph_0$$

Theorem (using s_0^{trans})

- Let $\{\mathcal{I}_{\alpha} : \alpha < \omega_1\}$ be an \aleph_1 -sized family of Sacks dense ideals. Then there exists an uncountable set $Y \in \bigcap_{\alpha \in \omega_1} \mathcal{I}_{\alpha}$.
- Under CH, we can construct the set Y in such a way that $Y \in s_0^{\text{trans}}$.
- ullet $Y\in s_0^{
 m trans}$ implies that there is a Sacks dense ideal ${\mathcal J}$ with $Y\notin {\mathcal J}.$

Question

Does $[2^{\omega}]^{\leq\aleph_0} = \bigcap \{\mathcal{I}: \mathcal{I} \text{ is } S.d.i.\}$ (at least consistently) hold under CH?

$$Y \in s_0 \quad :\iff \forall p \ \exists q \leq p \qquad \qquad |[q] \cap Y| \leq \aleph_0$$

$$Y \in s_0^{\text{trans}} :\iff \forall p \; \exists q \leq p \; \; \forall t \in 2^{\omega} \; \; |(t+[q]) \cap Y| \leq \aleph_0$$

Theorem (using s_0^{trans})

- Let $\{\mathcal{I}_{\alpha} : \alpha < \omega_1\}$ be an \aleph_1 -sized family of Sacks dense ideals. Then there exists an uncountable set $Y \in \bigcap_{\alpha \in \omega_1} \mathcal{I}_{\alpha}$.
- Under CH, we can construct the set Y in such a way that $Y \in s_0^{\mathrm{trans}}$.
- ullet $Y\in s_0^{
 m trans}$ implies that there is a Sacks dense ideal ${\mathcal J}$ with $Y\notin {\mathcal J}.$

Question

Does $[2^{\omega}]^{\leq \aleph_0} = \bigcap \{\mathcal{I} : \mathcal{I} \text{ is } S.d.i.\}$ (at least consistently) hold under CH?

$$Y \in s_0 \quad :\iff \forall p \ \exists q \leq p$$

$$|[q] \cap Y| \leq \aleph_0$$

$$Y \in s_0^{\text{trans}} :\iff \forall p \ \exists q \leq p \ \forall t \in 2^{\omega} \ |(t + [q]) \cap Y| \leq \aleph_0$$

Theorem (using s_0^{trans})

- Let $\{\mathcal{I}_{\alpha}: \alpha < \omega_1\}$ be an \aleph_1 -sized family of Sacks dense ideals. Then there exists an uncountable set $Y \in \bigcap_{\alpha \in \omega_1} \mathcal{I}_{\alpha}$.
- Under CH, we can construct the set Y in such a way that $Y \in s_0^{trans}$.
- $Y \in s_0^{\text{trans}}$ implies that there is a Sacks dense ideal \mathcal{J} with $Y \notin \mathcal{J}$.

Question

Does $[2^{\omega}]^{\leq \aleph_0} = \bigcap \{\mathcal{I} : \mathcal{I} \text{ is S.d.i.} \}$ (at least consistently) hold under CH?

Thank you for your attention and enjoy the Winter School...

Myself in Wrocław